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Abstract. In this paper, we present SeaHorn, a software verification
framework. The key distinguishing feature of SeaHorn is its modular
design that separates the concerns of the syntax of the programming
language, its operational semantics, and the verification semantics. Sea-
Horn encompasses several novelties: it (a) encodes verification condi-
tions using an efficient yet precise inter-procedural technique, (b) pro-
vides flexibility in the verification semantics to allow different levels of
precision, (c) leverages the state-of-the-art in software model checking
and abstract interpretation for verification, and (d) uses Horn-clauses as
an intermediate language to represent verification conditions which sim-
plifies interfacing with multiple verification tools based on Horn-clauses.
SeaHorn provides users with a powerful verification tool and researchers
with an extensible and customizable framework for experimenting with
new software verification techniques. The effectiveness and scalability
of SeaHorn are demonstrated by an extensive experimental evaluation
using benchmarks from SV-COMP 2015 and real avionics code.

1 Introduction

In this paper, we present SeaHorn, an LLVM-based [38] framework for verifica-
tion of safety properties of programs. SeaHorn is a fully automated verifier that
verifies user-supplied assertions as well as a number of built-in safety properties.
For example, SeaHorn provides built-in checks for buffer and signed integer
overflows. More generally, SeaHorn is a framework that simplifies development
and integration of new verification techniques. Its main features are:

1. It decouples a programming language syntax and semantics from the underly-
ing verification technique. Different programming languages include a diverse
assortments of features, many of which are purely syntactic. Handling them
fully is a major effort for new tool developers. We tackle this problem in
SeaHorn by separating the language syntax, its operational semantics, and
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the underlying verification semantics – the semantics used by the verification
engine. Specifically, we use the LLVM front-end(s) to deal with the idiosyn-
crasies of the syntax. We use LLVM intermediate representation (IR), called
the bitcode, to deal with the operational semantics, and apply a variety of
transformations to simplify it further. In principle, since the bitcode has
been formalized [54], this provides us with a well-defined formal semantics.
Finally, we use Constrained Horn Clauses (CHC) to logically represent the
verification condition (VC).

2. It provides an efficient and precise analysis of programs with procedure us-
ing new inter-procedural verification techniques. SeaHorn summarizes the
input-output behavior of procedures efficiently without inlining. The expres-
siveness of the summaries is not limited to linear arithmetic (as in our earlier
tools) but extends to richer logics, including, for instance, arrays. Moreover,
it includes a program transformation that lifts deep assertions closer to the
main procedure. This increases context-sensitivity of intra-procedural anal-
yses (used both in verification and compiler optimization), and has a signif-
icant impact on our inter-procedural verification algorithms.

3. It allows developers to customize the verification semantics and offers users
with verification semantics of various degrees of precision. SeaHorn is fully
parametric in the (small-step operational) semantics used for the generation
of VCs. The level of abstraction in the built-in semantics varies from consid-
ering only LLVM numeric registers to considering the whole heap (modeled
as a collection of non-overlapping arrays). In addition to generating VCs
based on small-step semantics [48], it can also automatically lift small-step
semantics to large-step [7, 28] (a.k.a. Large Block Encoding, or LBE).

4. It uses Constrained Horn Clauses (CHC) as its intermediate verification
language. CHC provide a convenient and elegant way to formally represent
many encoding styles of verification conditions. The recent popularity of
CHC as an intermediate language for verification engines makes it possible
to interface SeaHorn with a variety of new and emerging tools.

5. It builds on the state-of-the-art in Software Model Checking (SMC) and Ab-
stract Interpretation (AI). SMC and AI have independently led over the
years to the production of analysis tools that have a substantial impact on
the development of real world software. Interestingly, the two exhibit com-
plementary strengths and weaknesses (see e.g., [1,10,24,27]). While SMC so
far has been proved stronger on software that is mostly control driven, AI is
quite effective on data-dependent programs. SeaHorn combines SMT-based
model checking techniques with program invariants supplied by an abstract
interpretation-based tool.

6. Finally, it is implemented on top of the open-source LLVM compiler infras-
tructure. The latter is a well-maintained, well-documented, and continuously
improving framework. It allows SeaHorn users to easily integrate program
analyses, transformations, and other tools that targets LLVM. Moreover,
since SeaHorn analyses LLVM IR, this allows to exploit a rapidly-growing
frontier of LLVM front-ends, encompassing a diverse set of languages. Sea-
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Fig. 1: Overview of SeaHorn architecture.

Horn itself is released as open-source as well (source code can be downloaded
from http://seahorn.github.io).

The design of SeaHorn provides users, developers, and researchers with
an extensible and customizable environment for experimenting with and imple-
menting new software verification techniques. SeaHorn is implemented in C++
in the LLVM compiler infrastructure [38]. The overall approach is illustrated in
Figure 1. SeaHorn has been developed in a modular fashion; its architecture is
layered in three parts:

Front-End: Takes an LLVM based program (e.g., C) input program and gen-
erates LLVM IR bitcode. Specifically, it performs the pre-processing and op-
timization of the bitcode for verification purposes. More details are reported
in Section 2.

Middle-End: Takes as input the optimized LLVM bitcode and emits verifi-
cation condition as Constrained Horn Clauses (CHC). The middle-end is in
charge of selecting the encoding of the VCs and the degree of precision. More
details are reported in Section 3.

Back-End: Takes CHC as input and outputs the result of the analysis. In prin-
ciple, any verification engine that digests CHC clauses could be used to
discharge the VCs. Currently, SeaHorn employs several SMT-based model
checking engines based on PDR/IC3 [13], including Spacer [35, 36] and
GPDR [33]. Complementary, SeaHorn uses the abstract interpretation-
based analyzer IKOS (Inference Kernel for Open Static Analyzers) [14] for
providing numerical invariants5. More details are reported in Section 4.

The effectiveness and scalability of SeaHorn are demonstrated by our ex-
tensive experimental evaluation in Section 5 and the results of SV-COMP 2015.

Related work. Automated analysis of software is an active area of research.
There is a large number of tools with different capabilities and trade-offs [6, 8,
5 While conceptually, IKOS should run on CHC, currently it uses its own custom IR.

http://seahorn.github.io
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9, 15–18, 20, 42]. Our approach on separating the program semantics from the
verification engine has been previously proposed in numerous tools. From those,
the tool SMACK [49] is the closest to SeaHorn. Like SeaHorn, SMACK tar-
gets programs at the LLVM-IR level. However, SMACK targets Boogie inter-
mediate verification language [22] and Boogie-based verifiers to construct and
discharge the proof obligations. SeaHorn differs from SMACK in several ways:
(i) SeaHorn uses CHC as its intermediate verification language, which allows
to target different solvers and verification techniques (ii) it tightly integrates
and combines both state-of-the-art software model checking techniques and ab-
stract interpretation and (iii) it provides an automatic inter-procedural analysis
to reason modularly about programs with procedures.

Inter-procedural and modular analysis is critical for scaling verification tools
and has been addressed by many researchers (e.g., [2, 33, 35, 37, 40, 51]). Our
approach of using mixed-semantics [30] as a source-to-source transformation has
been also explored in [37]. While in [37], the mixed-semantics is done at the
verification semantics (Boogie in this case), in SeaHorn it is done in the front-
end level allowing mixed-semantics to interact with compiler optimizations.

Constrained Horn clauses have been recently proposed [11] as an intermediate
(or exchange) format for representing verification conditions. However, they have
long been used in the context of static analysis of imperative and object-oriented
languages (e.g., [41, 48]) and more recently adopted by an increasing number of
solvers (e.g., [12,23,33,36,40]) as well as other verifiers such as UFO [4], HSF [26],
VeriMAP [21], Eldarica [50], and TRACER [34].

2 Pre-processing for Verification

In our experience, performance of even the most advanced verification algo-
rithms is significantly impacted by the front-end transformations. In SeaHorn,
the front-end plays a very significant role in the overall architecture. SeaHorn
provides two front-ends: a legacy front-end and an inter-procedural front-end.

The legacy front-end. This front-end has been used by SeaHorn for the SV-
COMP 2015 competition [29] (for C programs). It was originally developed for
UFO [3]. First, the input C program is pre-processed with CIL [46] to insert line
markings for printing user-friendly counterexamples, define missing functions
that are implicitly defined (e.g., malloc-like functions), and initialize all local
variables. Moreover, it creates stubs for functions whose addresses can be taken
and replaces function pointers to those functions with function pointers to the
stubs. Second, the result is translated into LLVM-IR bitcode, using llvm-gcc.
After that, it performs compiler optimizations and preprocessing to simplify the
verification task. As a preprocessing step, we further initialize any uninitial-
ized registers using non-deterministic functions. This is used to bridge the gap
between the verification semantics (which assumes a non-deterministic assign-
ment) and the compiler semantics, which tries to take advantage of the undefined
behavior of uninitialized variables to perform code optimizations. We perform
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a number of program transformations such as function inlining, conversion to
static single assignment (SSA) form, dead code elimination, peephole optimiza-
tions, CFG simplifications, etc. We also internalize all functions to enable global
optimizations such as replacement of global aggregates with scalars.

The legacy front-end has been very effective for solving SV-COMP (2013,
2014, and 2015) problems. However, it has its own limitations: its design is not
modular and it relies on multiple unsupported legacy tools (such as llvm-gcc
and LLVM versions 2.6 and 2.9). Thus, it is difficult to maintain and extend.

The inter-procedural front-end. In this new front-end, SeaHorn can take any
input program that can be translated into LLVM bitcode. For example, Sea-
Horn uses clang and gcc via DragonEgg 6. Our goal is to make SeaHorn not
to be limited to C programs, but applicable (with various degrees of success) to
a broader set of languages based on LLVM (e.g., C++, Objective C, and Swift).

Once we have obtained LLVM bitcode, the front-end is split into two main
sub-components. The first one is a pre-processor that performs optimizations
and transformations similar to the ones performed by the legacy front-end. Such
pre-processing is optional as its only mission is to optimize the LLVM bitcode
to make the verification task ‘easier’. The second part is focused on a reduced
set of transformations mostly required to produce correct results even if the
pre-processor is disabled. It also performs SSA transformation and internalizes
functions, but in addition, lowers switch instructions into if-then-elses, en-
sures only one exit block per function, inlines global initializers into the main
procedure, and identifies assert-like functions.

Although this front-end can optionally inline functions similarly to the legacy
front-end, its major feature is a transformation that can significantly help the
verification engine to produce procedure summaries.

One typical problem in proving safety of large programs is that assertions
can be nested very deep inside the call graph. As a result, counterexamples are
longer and it is harder to decide for the verification engine what is relevant
for the property of interest. To mitigate this problem, the front-end provides a
transformation based on the concept of mixed semantics7 [30, 37]. It relies on
the simple observation that any call to a procedure P either fails inside the call
and therefore P does not return, or returns successfully from the call. Based on
this, any call to P can be instrumented as follows:

– if P may fail, then make a copy of P ’s body (in main) and jump to the copy.
– if P may succeed, then make the call to P as usual. Since P is known not to

fail each assertion in P can be safely replaced with an assume.

Upon completion, only the main function has assertions and each procedure is
inlined at most once. The explanation for the latter is that a function call is
6 DragonEgg (http://dragonegg.llvm.org/) is a GCC plugin that replaces GCC’s
optimizers and code generators with those from LLVM. As result, the output can be
LLVM bitcode.

7 The term mixed semantics refers to a combination of small- with big-step operational
semantics.

http://dragonegg.llvm.org/
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main ()
p1 (); p1 ();
assert (c1);

p1 ()
p2 ();
assert (c2);

p2 ()
assert (c3);

mainnew ()
if (*) goto p1entry;
else p1new ();
if (*) goto p1entry;
else p1new ();
if (¬c1) goto error ;
assume (false);

p1entry :
if (*) goto p2entry;
else p2new ();
if (¬c2) goto error ;

p2entry :
if (¬c3) goto error ;
assume (false);

error : assert (false);

p1new ()
p2new ();
assume (c2);

p2new ()
assume (c3);

Fig. 2: A program before and after mixed-semantics transformation.

inlined only if it fails and hence, its call stack can be ignored. A key property of
this transformation is that it preserves reachability and non-termination proper-
ties (see [30] for details). Since this transformation is not very common in other
verifiers, we illustrate its working on an example.

Example 1 (Mixed-semantics transformation). On the left in Figure 2 we show
a small program consisting of a main procedure calling two other procedures
p1 and p2 with three assertions c1, c2, and c3. On the right, we show the new
program after the mixed-semantics transformation. First, when main calls p1
it is transformed into a non-deterministic choice between (a) jumping into the
entry block of p1 or (b) calling p1. The case (a) represents the situation when
p1 fails and it is done by inlining the body of p1 (labeled by p1entry) into main
and adding a goto statement to p1entry. The case (b) considers the case when
p1 succeeds and hence it simply duplicates the function p1 but replacing all the
assertions with assumptions since no failure is possible. Note that while p1 is
called twice, it is inlined only once. Furthermore, each inlined function ends up
with an “assume (false)” indicating that execution dies. Hence, any complete ex-
ecution of a transformed program corresponds to a bad execution of the original
one. Finally, an interesting side-effect of mixed-semantics is that it can provide
some context-sensitivity to context-insensitive intra-procedural analyses.

3 Flexible Semantics for Developers

SeaHorn provides out-of-the-box verification semantics with different degrees
of precision. Furthermore, to accommodate a variety of applications, SeaHorn
is designed to be easily extended with a custom semantics as well. In this section,
we illustrate the various dimensions of semantic flexibility present in SeaHorn.

Encoding Verification Conditions. SeaHorn is parametric in the semantics used
for VC encoding. It provides two different semantics encodings: (a) a small-
step encoding (exemplified below in Figure 3) and (b) a large-block encoding
(LBE) [7]. A user can choose the encoding depending on the particular applica-
tion. In practice, LBE is often more efficient but small-step might be more useful
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int x = 1;
int y = 0;
while (∗) {

x = x+ y;
y = y + 1;

}
assert(x ≥ y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y
y = y + 1

l3 :
b2 = x ≥ y

l4 : lerr :

T

F

T F

〈1〉 p0.
〈2〉 p1(x, y)←

p0, x = 1, y = 0.
〈3〉 p2(x, y)← p1(x, y) .
〈4〉 p3(x, y)← p1(x, y) .
〈5〉 p1(x

′, y′)←
p2(x, y),
x′ = x+ y,
y′ = y + 1.

〈6〉 p4 ← (x ≥ y), p3(x, y).
〈7〉 perr ← (x < y), p3(x, y).
〈8〉 p4 ← p4.

(a) (b) (c)

Fig. 3: (a) Program, (b) Control-Flow Graph, and (c) Verification Conditions.

if a fine-grained proof or counterexample is needed. For example, SeaHorn used
the LBE encoding in SV-COMP [29].

Regardless of the encoding, SeaHorn uses CHC to encode the VCs. Given
the sets F of function symbols, P of predicate symbols, and V of variables, a
Constrained Horn Clause (CHC) is a formula

∀V · (φ ∧ p1[X1] ∧ · · · ∧ pk[Xk]→ h[X]), for k ≥ 0

where: φ is a constraint over F and V with respect to some background theory;
Xi, X ⊆ V are (possibly empty) vectors of variables; pi[Xi] is an application
p(t1, . . . , tn) of an n-ary predicate symbol p ∈ P for first-order terms ti con-
structed from F and Xi; and h[X] is either defined analogously to pi or is P-free
(i.e., no P symbols occur in h). Here, h is called the head of the clause and
φ∧p1[X1]∧ . . .∧pk[Xk] is called the body. A clause is called a query if its head is
P-free, and otherwise, it is called a rule. A rule with body true is called a fact. We
say a clause is linear if its body contains at most one predicate symbol, otherwise,
it is called non-linear. In this paper, we follow the Constraint Logic Programming
(CLP) convention of representing Horn clauses as h[X]← φ, p1[X1], . . . , pk[Xk].

A set of CHCs is satisfiable if there exists an interpretation I of the predicate
symbols P such that each constraint φ is true under I. Without loss of generality,
to check if a program A satisfies a safety property αsafe amounts to establishing
the (un)satifiability of CHCs encoding the VCs of A, as described next.

Example 2 (Small-step encoding of VCs using Horn clauses). Figure 3(a) shows
a program which increments two variables x and y within a non-deterministic
loop. After the loop is executed we would like to prove that x cannot be less
than y. Ignoring wraparound situations, it is easy to see that the program is safe
since x and y are initially non-negative numbers and x is greater than y. Since
the loop increases x by a greater amount than y, at its exit x cannot be smaller
than y. Figure 3(b) depicts, its corresponding Control Flow Graph (CFG) and
Figure 3(c) shows its VCs encoded as a set of CHCs.
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The set of CHCs in Figure 3(c) essentially represents the small-step oper-
ational semantics of the CFG. Each basic block is encoded as a Horn clause.
A basic block label li in the CFG is translated into pi(X1, . . . , Xn) such that
pi ∈ P and {X1, . . . , Xn} ⊆ V is the set of live variables at the entry of block
li. A Horn clause can model both the control flow and data of each block in
a very succinct way. For instance, the fact 〈1〉 represents that the entry block
l0 is reachable. Clause 〈2〉 describes that if l0 is reachable then l1 should be
reachable too. Moreover, its body contains the constraints x = 1 ∧ y = 0 rep-
resenting the initial state of the program. Clause 〈5〉 models the loop body by
stating that the control flow moves to l2 from l1 after transforming the state of
the program variables through the constraints x′ = x+ y and y′ = y + 1, where
the primed versions represent the values of the variables after the execution of
the arithmetic operations. Based on this encoding, the program in Figure 3(a) is
safe if and only if the set of recursive clauses in Figure 3(c) augmented with the
query perr is unsatisfiable. Note that since we are only concerned about proving
unsatisfiability any safe final state can be represented by an infinite loop (e.g.,
clause (8)).

SeaHorn middle-end offers a very simple interface for developers to implement
an encoding of the verification semantics that fits their needs. At the core of
the SeaHorn middle-end lies the concept of a symbolic store. A symbolic store
simply maps program variables to symbolic values. The other fundamental con-
cept is how different parts of a program are symbolically executed. The small-step
verification semantics is provided by implementing a symbolic execution inter-
face that symbolically executes LLVM instructions relative to the symbolic store.
This interface is automatically lifted to large-step semantics as necessary.

Modeling statements with different degrees of abstraction. The SeaHorn middle-
end includes verification semantics with different levels of abstraction. Those are,
from the coarsest to the finest:

Registers only: only models LLVM numeric registers. In this case, the con-
straints part of CHC is over the theory of Linear Integer Arithmetic (LIA).

Registers + Pointers (without memory content): models
numeric and pointer registers. This is sufficient to capture pointer arithmetic
and determine whether a pointer is NULL. Memory addresses are also encoded
as integers. Hence, the constraints remain over LIA.

Registers + Pointers + Memory: models numeric and pointer registers and
the heap. The heap is modeled by a collection of non-overlapping arrays. The
constraints are over the combined theories of arrays and LIA.

To model heap, SeaHorn uses a heap analysis called Data Structure Analysis
(DSA) [39]. In general, DSA is a context-sensitive, field-sensitive heap analysis
that builds an explicit model of the heap. However, in SeaHorn, we use a simpler
context-insensitive variant that is similar to Steensgaard’s pointer analysis [52].

In DSA, the memory is partitioned into a heap, a stack, and global objects.
The analysis builds for each function a DS graph where each node represents



The SeaHorn Verification Framework 9

main()
x = nondet();
y = nondet();
xold = x;
yold = y;
x = foo(x, y);
y = bar(x, y);
x = bar(x, y);
assert (x = yold ∧ y = xold);

foo(x, y)
res = x+ y;
return res;

bar(x, y)
res = x− y;
assert (¬ (x ≥ 0 ∧ y ≥ 0 ∧ x < res));
return res;

mentry.
massrt(xold, yold, x, y, eout)←

mentry,
xold = x, yold = y,
f(x, y, x1),
b(x1, y, y1, false, e),
b(x1, y1, x2, e, eout).

merr(eout)←
massrt(xold, yold, x, y, e),¬ e,
eout = ¬ (x = yold, y = xold).

merr(eout)←
massrt(xold, yold, x, y, eout), eout.

fentry(x, y).
fexit(x, y, res)←

fentry(x, y),
res = x+ y.

f(x, y, res)← fexit(x, y, res).
bentry(x, y).
bexit(x, y, res, eout)←

bentry(x, y),
res = x− y,
eout = (x ≥ 0 ∧ y ≥ 0 ∧ x < res).

b(x, y, z, true, true).
b(x, y, z, false, eout)← bexit(x, y, z, eout)

Fig. 4: A program with procedures (upper) and its verification condition (lower).

a potentially infinite set of memory objects and distinct DSA nodes express
disjoint sets of objects. Edges in the graph represents points-to relationships
between DS nodes. Each node is typed and determines the number of fields and
outgoing edges in a node. A node can have one outgoing edge per field but each
field can have at most one outgoing edge. This restriction is key for scalability
and it is preserved bymerging nodes whenever it is violated. A DS graph contains
also call nodes representing the effect of function calls.

Given a DS graph we can map each DS node to an array. Then each memory
load (read) and store (write) in the LLVM bitcode can be associated with a
particular DS node (i.e., array). For memory writes, SeaHorn creates a new
array variable representing the new state of the array after the write operation.

Inter-procedural proofs. For most real programs verifying a function separately
from each possible caller (i.e., context-sensitivity) is necessary for scalability. The
version of SeaHorn for SV-COMP 2015 [29] achieved full context-sensitivity by
inlining all program functions. Although in-lining is often an effective solution for
small and medium-size programs it is well known that suffers from an exponential
blow up in the size of the original program. Even more importantly inlining
cannot produce inter-procedural proofs nor counterexamples which are often
highly desired.

We tackle this problem in SeaHorn, by providing an encoding that allows
inter-procedural proofs. We illustrate this procedure via the example in Figure 4.
The upper box shows a program with three procedures: main, foo, and bar . The
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program swaps two numbers x and y. The procedure foo adds two numbers
and bar subtracts them. At the exit of main we want to prove that the program
indeed swaps the two inputs. To show all relevant aspects of the inter-procedural
encoding we add a trivial assertion in bar that checks that whenever x and y are
non-negative the input x is greater or equal than the return value.

The lower box of Figure 4 illustrates the corresponding verification condi-
tions encoded as CHCs. The new encoding follows a small-step style as the
intra-procedural encoding shown in Figure 3 but with two major distinctions.
First, notice that the CHCs are not linear anymore (e.g., the rule denoted by
massrt). Each function call has been replaced with a summary rule (f and b)
representing the effect of calling to the functions foo and bar, respectively. The
second difference is how assertions are encoded. In the intra-procedural case, a
program is unsafe if the query perr is satisfiable, where perr is the head of a CHC
associated with a special basic block to which all can-fail blocks are redirected.
However, with the presence of procedures assertions can be located deeply in
the call graph of the program, and therefore, we need to modify the CHCs to
propagate error to the main procedure.

In our example, since a call to bar can fail we add two arguments ein and
eout to the predicate b where ein indicates if there is an error before the function
is called and eout indicates whether the execution of bar produces an error. By
doing this, we are able to propagate the error in clause massrt across the two calls
to bar. We indicate that no error is possible at main before any function is called
by unifying false with ein in the first occurrence of b. Within a can-fail procedure
we skip the body and set eout to true as soon as an assertion can be violated.
Furthermore, if a function is called and ein is already true we can skip its body
(e.g., first clause of b). Functions that cannot fail (e.g., foo) are unchanged. The
above program is safe if and only if the query merr(true) is unsatisfiable.

Finally, it is worth mentioning that this propagation of error can be, in theory,
avoided if the mixed-semantics transformation described in Section 2 is applied.
However, this transformation assumes that all functions can be inlined in order
to raise all assertions to the main procedure. However, recursive functions and
functions that contain LLVM indirect branches (i.e., branches that can jump to
a label within the current function specified by an address) are not currently in-
lined in SeaHorn. For these reasons, our inter-procedural encoding must always
consider the propagation of error across Horn clauses.

4 Verification Engines

In principle, SeaHorn can be used with any Horn clause-based verification tool.
In the following, we describe two such tools developed recently by ourselves.
Notably, the tools discussed below are based on the contrasting techniques of
SMT-based model checking and Abstract Interpretation, showcasing the wide
applicability of SeaHorn.
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4.1 SMT-Based Model Checking with Spacer

Spacer is based on an efficient SMT-based algorithm for model checking pro-
cedural programs [35]. Compared to existing SMT-based algorithms (e.g., [2,26,
31, 40]), the key distinguishing characteristic of Spacer is its compositionality.
That is, to check safety of an input program, the algorithm iteratively creates and
checks local reachability queries for individual procedures (or the unknown pred-
icates of the Horn-clauses). This is crucial to avoid the exponential growth in the
size of SMT formulas present in approaches based on monolithic Bounded Model
Checking (BMC). To avoid redundancy and enable reuse, we maintain two kinds
of summaries for each procedure: may and must. A may (must) summary of a
procedure is a formula over its input-output parameters that over-approximates
(under-approximates) the set of all feasible pairs of pre- and post-states.

However, the creation of new reachability queries and summaries involves ex-
istentially quantifying auxiliary variables (e.g., local variables of a procedure). To
avoid dependencies on such auxiliary variables, we use a technique called Model
Based Projection (MBP) for lazily and efficiently eliminating existential quanti-
fiers for the theories of Linear Real Arithmetic and Linear Integer Arithmetic.
At a high level, given an existentially quantified formula ∃x · ϕ(x, y), where
ϕ is quantifier-free, it is expensive to obtain an equivalent quantifier-free for-
mula ψ(y). Instead, MBP obtains a quantifier-free under-approximation η(y) of
∃x·ϕ(x, y). To ensure that η is a useful under-approximation, MBP uses a model-
based approach such that given a modelM |= ϕ(x, y), it ensures that M |= η(y).

As mentioned in Section 3, SeaHorn models memory operations using the
extensional theory of arrays (ARR). To handle the resulting Horn clauses, we
have recently developed an MBP procedure for ARR. First of all, given a quan-
tified formula ∃a · ϕ(a, y) where a is an array variable with index sort I and
value sort V and ϕ is quantifier-free, one can obtain an equivalent formula
∃i, v · ϕ(i, v, y) where i and v are fresh variables of sort I and V , respectively.
This can be achieved by a simple modification of the decision procedure for ARR
by Stump et al. [53] and we skip the details in the interest of space.8 We illus-
trate our MBP procedure below using an example, which is based on the above
approach for eliminating existentially quantified array variables.

Let ϕ denote (b = a[i1 ← v1])∨ (a[i2 ← v2][i3] > 5∧a[i4] > 0), where a and b
are array variables whose index and value sorts are both Int, the sort of integers,
and all other variables have sort Int. Here, for an array a, we use a[i ← v] to
denote a store of v into a at index i and use a[i] to denote the value of a at
index i. Suppose that we want to existentially quantify the array variable a. Let
M |= ϕ. We will consider two possibilities for M :

1. Let M |= b = a[i1 ← v1], i.e., M satisfies the array equality containing
a. In this case, our MBP procedure substitutes the term b[i1 ← x] for a
in ϕ, where x is a fresh variable of sort Int. That is, the result of MBP is
∃x · ϕ[b[i1 ← x]/a].

8 The authors thank Nikolaj Bjørner and Kenneth L. McMillan for helpful discussions.
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2. Let M |= b 6= a[i1 ← v1]. We use the second disjunct of ϕ for MBP. Fur-
thermore, let M |= i2 6= i3. We then reduce the term a[i2 ← v2][i3] to a[i3]
to obtain a[i3] > 5 ∧ a[i4] > 0, using the relevant disjunct of the select-
after-store axiom of ARR. We then introduce fresh variables x3 and x4 to
denote the two select terms on a, obtaining x3 > 5∧x4 > 0. Finally, we add
i3 = i4 ∧ x3 = x4 if M |= i3 = i4 and add i3 6= i4 otherwise, choosing the
relevant case of Ackermann reduction, and existentially quantify x3 and x4.

The MBP procedure outlined above for ARR is implemented in Spacer.
Additionally, the version of Spacer used in SeaHorn contains numerous en-
hancements compared to [35].

4.2 Abstract Interpretation with Ikos

Ikos [14] is an open-source library of abstract domains with a state-of-the-art
fixed-point algorithm [5]. Available abstract domains include: intervals [19], re-
duced product of intervals with congruences [25], DBMs [43], and octagons [44].

SeaHorn users can choose Ikos as the only back-end engine to discharge
proof obligations. However, even if the abstract domain can express precisely
the program semantics, due to the join and widening operations, we might lose
some precision during the verification. As a consequence, Ikos alone might not
be sufficient as a back-end engine. Instead, a more suitable job for Ikos is to
supply program invariants to the other engines (e.g. Spacer).

To exemplify this, let us come back to the example of Figure 3. Spacer
alone can discover x ≥ y but it misses the vital invariant y ≥ 0. Thus, it does
not terminate. On the contrary, Ikos alone with the abstract domain of DBMs
can prove safety immediately. Interestingly, Spacer populated with invariants
supplied by Ikos using intervals proves safety even faster.

Although we envision Ikos to be part of the back-end it is currently part
of the middle-end translating bitcode to its own custom IR. Note that there is
no technical impediment to move Ikos to the back-end. Abstract interpretation
tools over Horn clauses have been previously explored successfully, e.g., [32].

5 Experimental Evaluation

In this section, we describe the results of our evaluation on various C pro-
gram benchmarks. First, we give an overview of SeaHorn performance at SV-
COMP 2015 that used the legacy non-inter-procedural front-end. Second, we
showcase the new inter-procedural verification flow on the hardest (for Sea-
Horn) instances from the competition. Finally, we illustrate a case study of the
use of SeaHorn built-in buffer overflow checks on autopilot control software.
Results of SV-COMP 2015. For the competition, we used the legacy front-
end described in Section 2. The middle-end was configured with the large step
semantics and the most precise level of small-step verification semantics (i.e.,
registers, pointers, and heap). Note, however, that for most benchmarks the heap
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Fig. 5: Spacer vs. Z3-PDR on hard benchmarks (a) with and (b) without inlining

is almost completely eliminated by the front-end. Ikos with interval abstract
domain and Z3-PDR were used on the back-end. Detailed results can be found
at http://tinyurl.com/svcomp15.

Overall, SeaHorn won one gold medal in the Simple category – benchmarks
that depend mostly on control-flow structure and integer variables – two silver
medals in the categories Device Drivers and Control Flow. The former is a set
of benchmarks derived from the Linux device drivers and includes a variety
of C features including pointers. The latter is a set of benchmarks dependent
mostly on the control-flow structure and integer variables. In the device drivers
category, SeaHorn was beaten only by BLAST [8] – a tool tuned to analyzing
Linux device drivers. Specifically, BLAST got 88% of the maximum score while
SeaHorn got 85%. The Control Flow category, was won by CPAChecker [9]
getting 74% of the maximum score, while SeaHorn got 69%. However, as can be
seen in the quantile plot reported in the Appendix A, SeaHorn is significantly
more efficient than most other tools solving most benchmarks much faster.

Results on Hard Benchmarks. SeaHorn participated in SV-COMP 2015
with the legacy front-end and using Z3-PDR as the verification back-end. To
test the efficiency of the new verification framework in SeaHorn, we ran several
experiments on the 215 benchmarks that we either could not verify or took more
than a minute to verify in SV-COMP. All experiments have been carried out
on an Ubuntu machine with a 2.2 GHz AMD Opteron(TM) Processor 6174 and
516GB RAM with resource limits of 30 minutes and 15GB for each verification
task. In the scatter plots that follow, a diamond indicates a time-out, a star
indicates a mem-out, and a box indicates an anomaly in the back-end tool.

For our first experiment, we used inlining in the front-end and Figure 5a
shows a scatter plot comparing Z3-PDR and Spacer in the back-end. The plot
clearly shows the advantages of the various techniques we developed in Spacer,
and in particular, of Model Based Projection for efficiently and lazily eliminating
existential quantifiers for integers and arrays.

Figure 5b compares the two back-end tools when SeaHorn is using inter-
procedural encoding. As the plot shows, Z3-PDR runs out of time on most of
the benchmarks whereas Spacer is able to verify many of them.

http://tinyurl.com/svcomp15
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Fig. 6: Advantage of inter-procedural encoding using Spacer.

Spacer Spacer BMC Z3-PDR Total verified
Safe 21 – 3 21
Unsafe 74 76 7 81

Table 1: Number of hard benchmarks that are verified as safe/unsafe by Spacer
in its normal and BMC mode, and Z3-PDR, with inlining disabled.

As mentioned in Section 2, inter-procedural encoding is advantageous from a
usability point of view. It turns out that it also makes verification easier over-all.
To see the advantage of inter-procedural encoding, we used the same tool Spacer
in the back-end and compared the running times with and without inlining in
the front-end. Figure 6 shows a scatter plot of the running times and we see that
Spacer takes less time on many benchmarks when inlining is disabled.

Spacer also has a compositional BMC mode (see Section 4.1 for details),
where no additional computation is performed towards invariant generation after
checking safety for a given value of the bound. This helps Spacer show the failure
of safety in two additional hard benchmarks, as shown in Table 1. The figure
also shows the number of benchmarks verified by Z3-PDR, the back-end tool
used in SV-COMP, for comparison.

Case Study: Checking Buffer Overflow in Avionics Software. We have
evaluated the SeaHorn built-in buffer overflow checks on two autopilot control
software. To prove absence of buffer overflows, we only need to add in the front-
end a new LLVM transformation pass that inserts the corresponding checks in
the bitcode. The middle-end and back-end are unchanged. If SeaHorn proves
the program is safe then it guarantees that the program is free of buffer overflows.
Details of the instrumentation are given in Appendix B.

Table 2 shows the results of our evaluation comparing SeaHorn with an
abstract interpretation-based static analyzer using Ikos (labelled analyzer)
developed at NASA Ames [14]. We have used two open-source autopilot control
software mnav [45] (160K LOC) and paparazzi [47] (20K LOC). Both are versatile
autopilot control software for a fixed-wing aircrafts and multi-copters. For each
benchmark, we created two versions: one inlining all functions (inlined) and the
other applying the mixed-semantics transformation (mixed). SeaHorn front-
end instruments the programs with the buffer overflow and underflow checks. In
the middle-end, we use large-step encoding and the inter-procedural encoding
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Program #C analyzer SeaHorn
%W T TF TM TSpacer TFMS TSpacer + TIkos TFMSI

mnav.inlined 607 4.7% 36 2 18 744 764 116 + 52 187
mnav.mixed 815 8.2% 10 1 8 278 287 139 + 5 153
paparazzi.inlined 343 0% 85 2 1 – 3 – 3
paparazzi.mixed 684 43% 15 1 2 3 6 2 + 1 6

Table 2: A comparison between SeaHorn and analyzer on autopilot software.

(for mixed). For mnav, we had to model the heap, while for paparazzi, modeling
registers and pointers only was sufficient. For analyzer, we neither inline nor
add the checks explicitly as these are handled internally. Both SeaHorn and
analyzer used intervals as the abstract domain.

In Table 2, #C denotes the number of overflow and underflow checks. For
analyzer, we show the warning rate %W and the total time of the analysis T .
For SeaHorn, we show the time spent by the front-end (TF ) and the middle-
end (TM ). All times are in seconds. For the back-end, we record the time spent
when Spacer alone is used (TSpacer), and the time spent when both Spacer
and Ikos are used (TSpacer + TIkos). The column TFMS and TFMSI denote the
total time, from front-end to the back-end, when Spacer alone and Spacer
together with Ikos are used, respectively. SeaHorn proves absence of buffer
overflows for both benchmarks, while analyzer can only do it for paparazzi;
although, for mnav the number of warnings was low (4%). To the best of our
knowledge, this is the first time that absence of buffer overflows has been proven
for mnav. For the inlined paparazzi benchmark, SeaHorn was able to discharge
the proof obligations using front-end only (probably because all global array
accesses were lowered to scalars and all loops are bound). The performance of
SeaHorn onmnav reveals that the inter-procedural encoding significantly better
than the inlined version. Furthermore, Ikos has a significant impact on the
results. Specially, SeaHorn with Ikos dramatically helps when the benchmark
is inlined. The best configuration is the inter-procedural encoding with Ikos.

6 Conclusion

We have presented SeaHorn, a new software verification framework with a
modular design that separates the concerns of the syntax of the language, its
operational semantics, and the verification semantics. Building a verifier from
scratch is a very tedious and time-consuming task. We believe that SeaHorn
is a versatile and highly customizable framework that can help significantly the
process of building new tools by allowing researchers experimenting only on their
particular techniques of interest. To demonstrate the practicality of this frame-
work, we shown that SeaHorn is a very competitive verifier for proving safety
properties both for academic benchmarks (SV-COMP) and large industrial soft-
ware (autopilot code).
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Fig. 7: Quantile graph of the results for the Control Flow category.
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B Buffer Overflow Instrumentation

The instrumentation for inserting buffer overflow and underflow checks is as
follows. For each pointer dereference *p we add two shadow registers: p.offset
and p.size. The former is the offset from the base address of the object that
contains p while the latter is the actual size of the allocated memory for p
(including padding and alignment). Note that for stack and static allocations
p.size is statically know. However, for malloc-like allocations p.size may only be
known dynamically. For each pointer dereference *p, we add two assertions:

assert (p.offset ≥ 0) (Underflow)
assert (p.offset < p.size) (Overflow)

Then, we need also to add instructions to propagate the values of the shadow
variables along the program including across procedure boundaries. More specif-
ically, for every instruction that performs pointer arithmetic we add arithmetic
operations over the shadow offset to compute its value.

For instrumenting a function f we add for each dereferenceable formal pa-
rameter x two more shadow formal parameters x.offset and x.size. Then, at a call
site of f and for a dereferenceable actual parameter y we add its corresponding
y.offset and y.size. Moreover, for each function that returns a pointer we add two
more shadow formal parameters to represent the size and offset of the returned
value. The difference here is that these two shadow variables must be passed by
reference at the call site so the continuation can use those. Thus, rather than
using registers we allocate them in the stack and pass their addresses to the
callee.
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