
Executable Counterexamples in Software Model Checking

J. Gennari1 and A. Gurfinkel2 and T. Kahsai3 and
J. A. Navas4 and E. J. Schwartz1

Presenter: Natarajan Shankar4

1Carnegie Mellon University
2University of Waterloo
3Amazon Web Services

4SRI International

VSTTE’18
July 18, 2018

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 1 / 18

Problem

A distinguishing feature of Model-Checking is to produce a
counterexample (cex) when a property is violated

A cex is a trace through the system that shows how system gets
to an error state from the initial states

Software Model Checkers (SMC) often generate cex’s as a set of
assignments from logical variables to values

In this work: how to show a SMC cex to developers?

Most approaches use text format containing line numbers and
variable values which can be understood for visualizers that relate
them with the program

SLAM Verification Project
Linux Driver Verification Project
SV-COMP

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 2 / 18

Our solution: Executable Counterexamples

An executable cex triggers the buggy execution witnessed by the SMC

1 Generate code stubs for the environment with which the Code
Under Analysis (CUA) interacts: libc, memcpy, malloc, OS
system calls, user input, socket, file, etc

2 Generate an executable after linking the stubs with the CUA

Key benefit: developer can use her traditional debugging tools
such as gdb, valgrind, etc.

Challenges:
1 scalability: naive symbolic or concolic execution do not scale

2 memory: counterexamples often dereference external memory

3 precision: fully ignoring external memory is not often precise to replay
the error

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 3 / 18

Test cases vs Executable Counterexamples

A test case is an executable that determines whether the CUA
satisfies a property or not

If property is violated, a test case is a proof of the existence of the error

An executable cex is also an executable that synthesizes an
environment for the CUA that is sufficient to trigger the error
witnessed by the SMC

An executable cex does not guarantee the existence of the error
because it might not consider all the system assumptions

Human help is still needed to confirm the existence of the error

However, executable cex’s are easier to generate than test cases

x = input();
if (hash(0x1234) == x) VERIFIER error();

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 4 / 18

Example: read/write a field of a nondet pointer

struct st { int x; int y; struct st ∗next; };

extern struct st∗ nd st(void);
int main(int argc, char∗∗argv) {

struct st ∗p;
p = nd st();
if (p > 0) {

p−>y = 43;
if (p−>x == 42)
if (p−>y == 43)

VERIFIER error();
}
return 0;

}

nd st() returns non-deterministically a pointer to a new memory
region
The external memory region is both modified and read

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 5 / 18

Proposed Framework

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 6 / 18

Software Model-Checker (SMC)

In: CUA + property
Out: generate a cex in the form of a trace if property is violated

Property violated if VERIFIER error() is executed

A trace is, in its most general form, a Control-Flow Graph
representation of the CUA where cut-point vertices are annotated
with the number of times they are executed in the cex

A trace can contain all blocks from the CUA

A trace can be also a transformed/optimized version of the CUA
SMC can over-approximate the concrete semantics or be
unsound:

presence of undefined-behavior
unsound and/or too imprecise memory modeling
lack of bit-precise semantics of integer operations
. . .

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 7 / 18

Directed Symbolic Execution (DirSE)

In: CUA + property + SMC trace
Out: more precise cex wrt to the concrete semantics if success or
abort otherwise

DirSE aims at proving VERIFIER error() is still reachable but
modeling more precisely the concrete semantics
DirSE implemented as an SMT-based BMC problem
A sound and more precise memory modeling:

malloc yields a pointer to a fresh allocated memory area disjoint from
previously allocated regions
memory addresses are 4- or 8-byte aligned
assume program is memory safe until the first error occurs:

malloc always succeeds
assume all dereferenced pointers are in-bounds

Bit-precise modeling of integer operations
More details of the concrete semantics can be considered at the
expense of increasing solving time

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 8 / 18

Harness Builder (HB)

Internalize all external functions by creating stubs for them

In: Detailed cex produced by DirSE
Out: code stubs for each external call and instrumented CUA

Sample from Linux Device Verification (LDV) project

extern int nondet int(void);
extern void∗ ldv ptr(void);
int main(...) {
void ∗p = ldv ptr();
if (p <= (long) 2012)

if (nondet int() > 456)
VERIFIER error();

}

int nondet int() {
static int x=0;
switch(x++) {

case 0: return 457;
case 1: ...
default: return 0; }}

void∗ ldv ptr() {
static int x=0;
switch(x++) {

case 0:
{ uintptr t p = 2011;
return (void∗) p; }

case 1: ...
default: return nullptr; }}

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 9 / 18

Generating stubs for Linux Device Drivers is challenging

Use of absolute addresses (e.g., 2012)
We believe address 2012 is added by the LDV team as part of the
kernel modeling

Real code is likely to have other absolute addresses

External functions can allocate new memory

Generated stubs can have addresses for which no memory has
been allocated in the CUA

The HB instruments the CUA with memory read/store hooks
that can control access to memory

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 10 / 18

External Memory Virtualization

CUA

External
Memory
Accesses

Internal
Memory
Accesses

N ot allocated

in the CUA

Allocated in

the CUA

Actual
Memory

Problem: map external memory accesses to actual memory

We have implemented two versions to deal with external accesses:

1 Ignore stores and return default value for loads
2 Allocate memory for external memory that is read or written

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 11 / 18

Demo

https://www.youtube.com/watch?v=3Mx2WKFbLus

https://www.youtube.com/watch?v=ct1X6pmnqk0&t=10s

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 12 / 18

https://www.youtube.com/watch?v=3Mx2WKFbLus
https://www.youtube.com/watch?v=ct1X6pmnqk0&t=10s

Experiments

We implemented DirSE, HB and EMV in SeaHorn and used
Spacer as the model-checker

We selected all the 356 false instances from Systems,
DeviceDrivers, and ReachSafety categories of SV-COMP’18

SMC solved 144, failed in 18, and ran out of resources in 194
(timeout=5m, memory limit=4GB)

DirSE discarded 3 instances due to mismatch in bit-precise
reasoning between SMC and DirSE

We used a simple version of EMV: ignore stores and return
default values for reads

Counterexamples were validated (i.e., VERIFIER error was
executed) in 24 cases (from 141)

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 13 / 18

Experimental results for validated counterexamples

SMC DirSE HB+EMV Harness Exec
Program T(s) #CP T(s) #BB T(s) T(s)

module get put-drivers-net-wan-farsync 8.72 3 12.66 11 0.7 0.0
32 7 linux-32 1-drivers--staging--keucr--keucr 2.38 3 0.88 11 2.17 0.0
32 7 single drivers-usb-image-microtek 0.76 3 0.02 6 0.78 0.0
linux-3.12-rc1-144 2a-drivers--net--wireless--

mwifiex--mwifiex usb 23.39 3 13.82 15 0.74 0.0
32 7 cilled linux-32 1-drivers--usb--image--microtek 0.64 3 0.01 6 0.79 0.0
32 7 cilled linux-32 1-drivers--media--dvb--dvb-

usb--dvb-usb-dib0700 2.19 3 0.48 11 2.76 0.0
32 7 cilled linux-32 1-drivers--isdn--capi--kernelcapi 0.92 3 6.37 11 1.51 0.0
32 7 cilled linux-32 1-drivers--media--video--mem2mem testdev 5.28 3 3.5 16 0.8 0.0
32 7 cilled linux-32 1-drivers--usb--storage--usb-storage 30.59 3 124.27 11 1.68 0.0
32 7 single drivers-staging-media-dt3155v4l-dt3155v4l 2.63 3 5.47 12 0.93 0.0
43 1a cilled linux-43 1a-drivers--misc--sgi-xp--xpc 105.8 5 2.64 31 2.0 0.0
m0 drivers-usb-gadget-g printer-ko--106 1a--2b9ec6c-1 8.35 2 0.41 16 0.65 0.0
linux-3.12-rc1 2a-drivers--staging--media--

go7007--go7007-loader 0.82 5 0.24 35 0.44 0.0
205 9a linux-3.16-rc1 9a-drivers--net--ppp synctty 44.32 6 3.46 61 0.71 0.0
205 9a linux-3.16-rc1 9a-drivers--net--wan--hdlc ppp 195.22 5 57.41 52 0.66 0.0
43 2a linux-3.16-rc1 2a-drivers--usb--host--max3421-hcd 2.3 4 5.28 36 0.82 0.0
linux-stable-9ec4f65-1-110 1a-drivers--rtc--rtc-tegra 0.78 6 0.2 35 0.52 0.0
linux-stable-39a1d13-1-101 1a-drivers--block--virtio blk 1.71 5 7.04 37 0.52 0.0
linux-stable-42f9f8d-1-111 1a-sound--oss--opl3 6.03 4 14.08 22 0.61 0.0
linux-stable-2b9ec6c-1-106 1a-drivers--usb--gadget--g printer 51.12 4 28.46 37 0.67 0.0
linux-stable-39a1d13-1-101 1a-drivers--block--virtio blk 1.63 5 0.84 33 0.66 0.0
linux-stable-2b9ec6c-1-106 1a-drivers--usb--gadget--g printer 43.1 4 17.29 26 0.69 0.0
linux-stable-d47b389-1-32 7a-drivers--media--video--cx88--

cx88-blackbird 39.48 4 27.18 96 0.75 0.0
linux-4.2-rc1 1a-drivers--md--md-cluster 5.84 5 12.0 23 0.68 0.0

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 14 / 18

Related Work: Executable Counterexamples from SMC

EZProofC [RBCN12] and Beyer [BDLT18] replace in CUA all
assignments with values from the SMC cex’s:

they do not focus on dereferences of pointers allocated by external
functions
unclear how to extract executables in presence of aggressive compiler
optimizations

Muller [MR11] generate C# executable cex’s from Spec#
programs:

Spec# does not have direct pointer manipulation
executables simulate the verification semantics of the verifier rather
than the concrete semantics of the language

CnC (Check ’n’ crash) [CS05] produces test cases from cex’s
identified by ESC/Java

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 15 / 18

More Related Work

Dynamic SMC (e.g., VeriSoft) and test-case generation tools
such as JPF, DART, EXE, CUTE, Klee, SAGE, PEX, etc

they focus on producing high coverage and/or trigger shallow bugs
based on dynamic symbolic execution and model checking
they model the concrete semantics of the program and allocate
memory on-the-fly
we allow the SMC to use abstract semantics or even be unsound so
that the process of finding deep errors can scale

Guided symbolic execution: Directed Symbolic
Execution [MKFH11] and Christakis [CMW16]

use of static analysis and/or heuristics to guide forward symbolic
execution
they do not deal with memory

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 16 / 18

Conclusions

We believe that executable counterexamples are essential for
software engineers to adopt Model-Checking technology

Executable counterexamples implement stubs for external
functions that are linked to the CUA

We have proposed a new framework and provided an
implementation to generate executable counterexamples from C
programs

The framework allows the model checker to over-approximate the
concrete semantics or to be unsound

Initial results are promising but more work needs to be done,
specially with complicated memory structures:

WIP implementation

New EMV that allocates actual memory for external memory regions

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 17 / 18

References

[CS05]: Check ’n’ Crash. Csallner and Smaragdakis in ICSE’05

[MR11]: Using Debuggers to Understand Failed Verification
Attempts. Müller and Ruskiewicz in FM’11

[MKFH11]: Directed Symbolic Execution. Ma, Khoo, Foster, and
Hicks in SAS’11

[RBCN12]: Understanding Programing Bugs in ANSI-C Software
using Bounded Model Checking Counter-Examples. Rocha,
Barreto, Cordeiro, and Neto in IFM’12

[CMW16]: Guiding dynamic symbolic execution toward unverified
program executions. Christakis, Müller, and Wüstholz in ICSE’16

[BDLT18]: Tests from witnesses - execution-based validation of
verification results. Beyer, Dangl, Lemberger, and Tautschnig in
TAP’18

Gennari et. al. (CMU/Waterloo/AWS/SRI) Executable Counterexamples in SMC VSTTE’18 July 18, 2018 18 / 18

