Line data Source code
1 : #ifndef AWS_COMMON_PRIVATE_LOOKUP3_INL
2 : #define AWS_COMMON_PRIVATE_LOOKUP3_INL
3 : /* clang-format off */
4 :
5 : /*
6 : * The following public domain code has been modified as follows:
7 : * # All functions have been made static.
8 : * # The self test harness has been turned off.
9 : * # stdint.h include removed for C89 compatibility.
10 : *
11 : * The original code was retrieved from http://burtleburtle.net/bob/c/lookup3.c
12 : */
13 :
14 : /*
15 : -------------------------------------------------------------------------------
16 : lookup3.c, by Bob Jenkins, May 2006, Public Domain.
17 :
18 : These are functions for producing 32-bit hashes for hash table lookup.
19 : hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
20 : are externally useful functions. Routines to test the hash are included
21 : if SELF_TEST is defined. You can use this free for any purpose. It's in
22 : the public domain. It has no warranty.
23 :
24 : You probably want to use hashlittle(). hashlittle() and hashbig()
25 : hash byte arrays. hashlittle() is is faster than hashbig() on
26 : little-endian machines. Intel and AMD are little-endian machines.
27 : On second thought, you probably want hashlittle2(), which is identical to
28 : hashlittle() except it returns two 32-bit hashes for the price of one.
29 : You could implement hashbig2() if you wanted but I haven't bothered here.
30 :
31 : If you want to find a hash of, say, exactly 7 integers, do
32 : a = i1; b = i2; c = i3;
33 : mix(a,b,c);
34 : a += i4; b += i5; c += i6;
35 : mix(a,b,c);
36 : a += i7;
37 : final(a,b,c);
38 : then use c as the hash value. If you have a variable length array of
39 : 4-byte integers to hash, use hashword(). If you have a byte array (like
40 : a character string), use hashlittle(). If you have several byte arrays, or
41 : a mix of things, see the comments above hashlittle().
42 :
43 : Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
44 : then mix those integers. This is fast (you can do a lot more thorough
45 : mixing with 12*3 instructions on 3 integers than you can with 3 instructions
46 : on 1 byte), but shoehorning those bytes into integers efficiently is messy.
47 : -------------------------------------------------------------------------------
48 : */
49 : // #define SELF_TEST 1
50 :
51 : #include <stdio.h> /* defines printf for tests */
52 : #include <time.h> /* defines time_t for timings in the test */
53 : #ifndef _MSC_VER
54 : #include <sys/param.h> /* attempt to define endianness */
55 : #endif
56 : #ifdef linux
57 : # include <endian.h> /* attempt to define endianness */
58 : #endif
59 :
60 : #if _MSC_VER
61 : #pragma warning(push)
62 : #pragma warning(disable:4127) /*Disable "conditional expression is constant" */
63 : #endif /* _MSC_VER */
64 :
65 : #ifdef CBMC
66 : # pragma CPROVER check push
67 : # pragma CPROVER check disable "unsigned-overflow"
68 : #endif /* CBMC */
69 :
70 : /*
71 : * My best guess at if you are big-endian or little-endian. This may
72 : * need adjustment.
73 : */
74 : #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
75 : __BYTE_ORDER == __LITTLE_ENDIAN) || \
76 : (defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
77 : __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || \
78 : (defined(i386) || defined(__i386__) || defined(__i486__) || \
79 : defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL) || \
80 : defined(_M_IX86) || defined(_M_X64) || defined(_M_IA64) || defined(_M_ARM))
81 644878 : # define HASH_LITTLE_ENDIAN 1
82 0 : # define HASH_BIG_ENDIAN 0
83 : #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
84 : __BYTE_ORDER == __BIG_ENDIAN) || \
85 : (defined(sparc) || defined(POWERPC) || defined(_M_PPC) || defined(mc68000) || defined(sel))
86 : # define HASH_LITTLE_ENDIAN 0
87 : # define HASH_BIG_ENDIAN 1
88 : #else
89 : # define HASH_LITTLE_ENDIAN 0
90 : # define HASH_BIG_ENDIAN 0
91 : #endif
92 :
93 : #define hashsize(n) ((uint32_t)1<<(n))
94 : #define hashmask(n) (hashsize(n)-1)
95 2177273 : #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
96 :
97 : /*
98 : -------------------------------------------------------------------------------
99 : mix -- mix 3 32-bit values reversibly.
100 :
101 : This is reversible, so any information in (a,b,c) before mix() is
102 : still in (a,b,c) after mix().
103 :
104 : If four pairs of (a,b,c) inputs are run through mix(), or through
105 : mix() in reverse, there are at least 32 bits of the output that
106 : are sometimes the same for one pair and different for another pair.
107 : This was tested for:
108 : * pairs that differed by one bit, by two bits, in any combination
109 : of top bits of (a,b,c), or in any combination of bottom bits of
110 : (a,b,c).
111 : * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
112 : the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
113 : is commonly produced by subtraction) look like a single 1-bit
114 : difference.
115 : * the base values were pseudorandom, all zero but one bit set, or
116 : all zero plus a counter that starts at zero.
117 :
118 : Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
119 : satisfy this are
120 : 4 6 8 16 19 4
121 : 9 15 3 18 27 15
122 : 14 9 3 7 17 3
123 : Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
124 : for "differ" defined as + with a one-bit base and a two-bit delta. I
125 : used http://burtleburtle.net/bob/hash/avalanche.html to choose
126 : the operations, constants, and arrangements of the variables.
127 :
128 : This does not achieve avalanche. There are input bits of (a,b,c)
129 : that fail to affect some output bits of (a,b,c), especially of a. The
130 : most thoroughly mixed value is c, but it doesn't really even achieve
131 : avalanche in c.
132 :
133 : This allows some parallelism. Read-after-writes are good at doubling
134 : the number of bits affected, so the goal of mixing pulls in the opposite
135 : direction as the goal of parallelism. I did what I could. Rotates
136 : seem to cost as much as shifts on every machine I could lay my hands
137 : on, and rotates are much kinder to the top and bottom bits, so I used
138 : rotates.
139 : -------------------------------------------------------------------------------
140 : */
141 0 : #define mix(a,b,c) \
142 0 : { \
143 0 : a -= c; a ^= rot(c, 4); c += b; \
144 0 : b -= a; b ^= rot(a, 6); a += c; \
145 0 : c -= b; c ^= rot(b, 8); b += a; \
146 0 : a -= c; a ^= rot(c,16); c += b; \
147 0 : b -= a; b ^= rot(a,19); a += c; \
148 0 : c -= b; c ^= rot(b, 4); b += a; \
149 0 : }
150 :
151 : /*
152 : -------------------------------------------------------------------------------
153 : final -- final mixing of 3 32-bit values (a,b,c) into c
154 :
155 : Pairs of (a,b,c) values differing in only a few bits will usually
156 : produce values of c that look totally different. This was tested for
157 : * pairs that differed by one bit, by two bits, in any combination
158 : of top bits of (a,b,c), or in any combination of bottom bits of
159 : (a,b,c).
160 : * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
161 : the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
162 : is commonly produced by subtraction) look like a single 1-bit
163 : difference.
164 : * the base values were pseudorandom, all zero but one bit set, or
165 : all zero plus a counter that starts at zero.
166 :
167 : These constants passed:
168 : 14 11 25 16 4 14 24
169 : 12 14 25 16 4 14 24
170 : and these came close:
171 : 4 8 15 26 3 22 24
172 : 10 8 15 26 3 22 24
173 : 11 8 15 26 3 22 24
174 : -------------------------------------------------------------------------------
175 : */
176 622078 : #define final(a,b,c) \
177 622078 : { \
178 622078 : c ^= b; c -= rot(b,14); \
179 622078 : a ^= c; a -= rot(c,11); \
180 622078 : b ^= a; b -= rot(a,25); \
181 622078 : c ^= b; c -= rot(b,16); \
182 622078 : a ^= c; a -= rot(c,4); \
183 622078 : b ^= a; b -= rot(a,14); \
184 622078 : c ^= b; c -= rot(b,24); \
185 622078 : }
186 :
187 : /*
188 : --------------------------------------------------------------------
189 : This works on all machines. To be useful, it requires
190 : -- that the key be an array of uint32_t's, and
191 : -- that the length be the number of uint32_t's in the key
192 :
193 : The function hashword() is identical to hashlittle() on little-endian
194 : machines, and identical to hashbig() on big-endian machines,
195 : except that the length has to be measured in uint32_ts rather than in
196 : bytes. hashlittle() is more complicated than hashword() only because
197 : hashlittle() has to dance around fitting the key bytes into registers.
198 : --------------------------------------------------------------------
199 : */
200 : static uint32_t hashword(
201 : const uint32_t *k, /* the key, an array of uint32_t values */
202 : size_t length, /* the length of the key, in uint32_ts */
203 : uint32_t initval) /* the previous hash, or an arbitrary value */
204 0 : {
205 0 : uint32_t a,b,c;
206 0 :
207 0 : /* Set up the internal state */
208 0 : a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
209 0 :
210 0 : /*------------------------------------------------- handle most of the key */
211 0 : while (length > 3)
212 0 : {
213 0 : a += k[0];
214 0 : b += k[1];
215 0 : c += k[2];
216 0 : mix(a,b,c);
217 0 : length -= 3;
218 0 : k += 3;
219 0 : }
220 0 :
221 0 : /*------------------------------------------- handle the last 3 uint32_t's */
222 0 : switch(length) /* all the case statements fall through */
223 0 : {
224 0 : case 3 : c+=k[2];
225 0 : case 2 : b+=k[1];
226 0 : case 1 : a+=k[0];
227 0 : final(a,b,c);
228 0 : case 0: /* case 0: nothing left to add */
229 0 : break;
230 0 : }
231 0 : /*------------------------------------------------------ report the result */
232 0 : return c;
233 0 : }
234 :
235 :
236 : /*
237 : --------------------------------------------------------------------
238 : hashword2() -- same as hashword(), but take two seeds and return two
239 : 32-bit values. pc and pb must both be nonnull, and *pc and *pb must
240 : both be initialized with seeds. If you pass in (*pb)==0, the output
241 : (*pc) will be the same as the return value from hashword().
242 : --------------------------------------------------------------------
243 : */
244 : static void hashword2 (
245 : const uint32_t *k, /* the key, an array of uint32_t values */
246 : size_t length, /* the length of the key, in uint32_ts */
247 : uint32_t *pc, /* IN: seed OUT: primary hash value */
248 : uint32_t *pb) /* IN: more seed OUT: secondary hash value */
249 0 : {
250 0 : uint32_t a,b,c;
251 0 :
252 0 : /* Set up the internal state */
253 0 : a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
254 0 : c += *pb;
255 0 :
256 0 : /*------------------------------------------------- handle most of the key */
257 0 : while (length > 3)
258 0 : {
259 0 : a += k[0];
260 0 : b += k[1];
261 0 : c += k[2];
262 0 : mix(a,b,c);
263 0 : length -= 3;
264 0 : k += 3;
265 0 : }
266 0 :
267 0 : /*------------------------------------------- handle the last 3 uint32_t's */
268 0 : switch(length) /* all the case statements fall through */
269 0 : {
270 0 : case 3 : c+=k[2];
271 0 : case 2 : b+=k[1];
272 0 : case 1 : a+=k[0];
273 0 : final(a,b,c);
274 0 : case 0: /* case 0: nothing left to add */
275 0 : break;
276 0 : }
277 0 : /*------------------------------------------------------ report the result */
278 0 : *pc=c; *pb=b;
279 0 : }
280 :
281 :
282 : /*
283 : -------------------------------------------------------------------------------
284 : hashlittle() -- hash a variable-length key into a 32-bit value
285 : k : the key (the unaligned variable-length array of bytes)
286 : length : the length of the key, counting by bytes
287 : initval : can be any 4-byte value
288 : Returns a 32-bit value. Every bit of the key affects every bit of
289 : the return value. Two keys differing by one or two bits will have
290 : totally different hash values.
291 :
292 : The best hash table sizes are powers of 2. There is no need to do
293 : mod a prime (mod is sooo slow!). If you need less than 32 bits,
294 : use a bitmask. For example, if you need only 10 bits, do
295 : h = (h & hashmask(10));
296 : In which case, the hash table should have hashsize(10) elements.
297 :
298 : If you are hashing n strings (uint8_t **)k, do it like this:
299 : for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
300 :
301 : By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
302 : code any way you wish, private, educational, or commercial. It's free.
303 :
304 : Use for hash table lookup, or anything where one collision in 2^^32 is
305 : acceptable. Do NOT use for cryptographic purposes.
306 : -------------------------------------------------------------------------------
307 : */
308 :
309 : static uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
310 0 : {
311 0 : uint32_t a,b,c; /* internal state */
312 0 : union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
313 0 :
314 0 : /* Set up the internal state */
315 0 : a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
316 0 :
317 0 : u.ptr = key;
318 0 : if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
319 0 : const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
320 0 :
321 0 : /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
322 0 : while (length > 12)
323 0 : {
324 0 : a += k[0];
325 0 : b += k[1];
326 0 : c += k[2];
327 0 : mix(a,b,c);
328 0 : length -= 12;
329 0 : k += 3;
330 0 : }
331 0 :
332 0 : /*----------------------------- handle the last (probably partial) block */
333 0 : /*
334 0 : * "k[2]&0xffffff" actually reads beyond the end of the string, but
335 0 : * then masks off the part it's not allowed to read. Because the
336 0 : * string is aligned, the masked-off tail is in the same word as the
337 0 : * rest of the string. Every machine with memory protection I've seen
338 0 : * does it on word boundaries, so is OK with this. But VALGRIND and CBMC
339 0 : * will still catch it and complain. CBMC will ignore this type of error
340 0 : * in the code block between the pragmas "CPROVER check push" and
341 0 : * "CPROVER check pop". The masking trick does make the hash noticably
342 0 : * faster for short strings (like English words).
343 0 : */
344 0 : #ifndef VALGRIND
345 : #ifdef CBMC
346 : # pragma CPROVER check push
347 : # pragma CPROVER check disable "pointer"
348 : #endif
349 : // changed in aws-c-common: fix unused variable warning
350 0 :
351 0 : switch(length)
352 0 : {
353 0 : case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
354 0 : case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
355 0 : case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
356 0 : case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
357 0 : case 8 : b+=k[1]; a+=k[0]; break;
358 0 : case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
359 0 : case 6 : b+=k[1]&0xffff; a+=k[0]; break;
360 0 : case 5 : b+=k[1]&0xff; a+=k[0]; break;
361 0 : case 4 : a+=k[0]; break;
362 0 : case 3 : a+=k[0]&0xffffff; break;
363 0 : case 2 : a+=k[0]&0xffff; break;
364 0 : case 1 : a+=k[0]&0xff; break;
365 0 : case 0 : return c; /* zero length strings require no mixing */
366 0 : }
367 : #ifdef CBMC
368 : # pragma CPROVER check pop
369 : #endif
370 : #else /* make valgrind happy */
371 :
372 : const uint8_t *k8 = (const uint8_t *)k;
373 : switch(length)
374 : {
375 : case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
376 : case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
377 : case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
378 : case 9 : c+=k8[8]; /* fall through */
379 : case 8 : b+=k[1]; a+=k[0]; break;
380 : case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
381 : case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
382 : case 5 : b+=k8[4]; /* fall through */
383 : case 4 : a+=k[0]; break;
384 : case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
385 : case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
386 : case 1 : a+=k8[0]; break;
387 : case 0 : return c;
388 : }
389 :
390 : #endif /* !valgrind */
391 :
392 0 : } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
393 0 : const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
394 0 :
395 0 : /*--------------- all but last block: aligned reads and different mixing */
396 0 : while (length > 12)
397 0 : {
398 0 : a += k[0] + (((uint32_t)k[1])<<16);
399 0 : b += k[2] + (((uint32_t)k[3])<<16);
400 0 : c += k[4] + (((uint32_t)k[5])<<16);
401 0 : mix(a,b,c);
402 0 : length -= 12;
403 0 : k += 6;
404 0 : }
405 0 :
406 0 : /*----------------------------- handle the last (probably partial) block */
407 0 : const uint8_t *k8 = (const uint8_t *)k;
408 0 : switch(length)
409 0 : {
410 0 : case 12: c+=k[4]+(((uint32_t)k[5])<<16);
411 0 : b+=k[2]+(((uint32_t)k[3])<<16);
412 0 : a+=k[0]+(((uint32_t)k[1])<<16);
413 0 : break;
414 0 : case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
415 0 : case 10: c+=k[4];
416 0 : b+=k[2]+(((uint32_t)k[3])<<16);
417 0 : a+=k[0]+(((uint32_t)k[1])<<16);
418 0 : break;
419 0 : case 9 : c+=k8[8]; /* fall through */
420 0 : case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
421 0 : a+=k[0]+(((uint32_t)k[1])<<16);
422 0 : break;
423 0 : case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
424 0 : case 6 : b+=k[2];
425 0 : a+=k[0]+(((uint32_t)k[1])<<16);
426 0 : break;
427 0 : case 5 : b+=k8[4]; /* fall through */
428 0 : case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
429 0 : break;
430 0 : case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
431 0 : case 2 : a+=k[0];
432 0 : break;
433 0 : case 1 : a+=k8[0];
434 0 : break;
435 0 : case 0 : return c; /* zero length requires no mixing */
436 0 : }
437 0 :
438 0 : } else { /* need to read the key one byte at a time */
439 0 : const uint8_t *k = (const uint8_t *)key;
440 0 :
441 0 : /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
442 0 : while (length > 12)
443 0 : {
444 0 : a += k[0];
445 0 : a += ((uint32_t)k[1])<<8;
446 0 : a += ((uint32_t)k[2])<<16;
447 0 : a += ((uint32_t)k[3])<<24;
448 0 : b += k[4];
449 0 : b += ((uint32_t)k[5])<<8;
450 0 : b += ((uint32_t)k[6])<<16;
451 0 : b += ((uint32_t)k[7])<<24;
452 0 : c += k[8];
453 0 : c += ((uint32_t)k[9])<<8;
454 0 : c += ((uint32_t)k[10])<<16;
455 0 : c += ((uint32_t)k[11])<<24;
456 0 : mix(a,b,c);
457 0 : length -= 12;
458 0 : k += 12;
459 0 : }
460 0 :
461 0 : /*-------------------------------- last block: affect all 32 bits of (c) */
462 0 : switch(length) /* all the case statements fall through */
463 0 : {
464 0 : case 12: c+=((uint32_t)k[11])<<24;
465 0 : case 11: c+=((uint32_t)k[10])<<16;
466 0 : case 10: c+=((uint32_t)k[9])<<8;
467 0 : case 9 : c+=k[8];
468 0 : case 8 : b+=((uint32_t)k[7])<<24;
469 0 : case 7 : b+=((uint32_t)k[6])<<16;
470 0 : case 6 : b+=((uint32_t)k[5])<<8;
471 0 : case 5 : b+=k[4];
472 0 : case 4 : a+=((uint32_t)k[3])<<24;
473 0 : case 3 : a+=((uint32_t)k[2])<<16;
474 0 : case 2 : a+=((uint32_t)k[1])<<8;
475 0 : case 1 : a+=k[0];
476 0 : break;
477 0 : case 0 : return c;
478 0 : }
479 0 : }
480 0 :
481 0 : final(a,b,c);
482 0 : return c;
483 0 : }
484 :
485 :
486 : /*
487 : * hashlittle2: return 2 32-bit hash values
488 : *
489 : * This is identical to hashlittle(), except it returns two 32-bit hash
490 : * values instead of just one. This is good enough for hash table
491 : * lookup with 2^^64 buckets, or if you want a second hash if you're not
492 : * happy with the first, or if you want a probably-unique 64-bit ID for
493 : * the key. *pc is better mixed than *pb, so use *pc first. If you want
494 : * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
495 : */
496 : static void hashlittle2(
497 : const void *key, /* the key to hash */
498 : size_t length, /* length of the key */
499 : uint32_t *pc, /* IN: primary initval, OUT: primary hash */
500 : uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */
501 322439 : {
502 322439 : uint32_t a,b,c; /* internal state */
503 322439 : union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
504 322439 :
505 322439 : /* Set up the internal state */
506 322439 : a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
507 322439 : c += *pb;
508 322439 :
509 322439 : u.ptr = key;
510 322439 : if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
511 322439 : const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
512 322439 :
513 322439 : /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
514 322439 : while (length > 12)
515 0 : {
516 0 : a += k[0];
517 0 : b += k[1];
518 0 : c += k[2];
519 0 : mix(a,b,c);
520 0 : length -= 12;
521 0 : k += 3;
522 0 : }
523 322439 :
524 322439 : /*----------------------------- handle the last (probably partial) block */
525 322439 : /*
526 322439 : * "k[2]&0xffffff" actually reads beyond the end of the string, but
527 322439 : * then masks off the part it's not allowed to read. Because the
528 322439 : * string is aligned, the masked-off tail is in the same word as the
529 322439 : * rest of the string. Every machine with memory protection I've seen
530 322439 : * does it on word boundaries, so is OK with this. But VALGRIND and CBMC
531 322439 : * will still catch it and complain. CBMC will ignore this type of error
532 322439 : * in the code block between the pragmas "CPROVER check push" and
533 322439 : * "CPROVER check pop". The masking trick does make the hash noticably
534 322439 : * faster for short strings (like English words).
535 322439 : */
536 322439 : #ifndef VALGRIND
537 : #ifdef CBMC
538 : # pragma CPROVER check push
539 : # pragma CPROVER check disable "pointer"
540 : #endif
541 : // changed in aws-c-common: fix unused variable warning
542 322439 :
543 322439 : switch(length)
544 322439 : {
545 0 : case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
546 0 : case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
547 3965 : case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
548 19493 : case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
549 156623 : case 8 : b+=k[1]; a+=k[0]; break;
550 21601 : case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
551 20224 : case 6 : b+=k[1]&0xffff; a+=k[0]; break;
552 20660 : case 5 : b+=k[1]&0xff; a+=k[0]; break;
553 14819 : case 4 : a+=k[0]; break;
554 18516 : case 3 : a+=k[0]&0xffffff; break;
555 15815 : case 2 : a+=k[0]&0xffff; break;
556 19323 : case 1 : a+=k[0]&0xff; break;
557 11400 : case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
558 0 : }
559 0 :
560 : #ifdef CBMC
561 : # pragma CPROVER check pop
562 : #endif
563 : #else /* make valgrind happy */
564 :
565 : const uint8_t *k8 = (const uint8_t *)k;
566 : switch(length)
567 : {
568 : case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
569 : case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
570 : case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
571 : case 9 : c+=k8[8]; /* fall through */
572 : case 8 : b+=k[1]; a+=k[0]; break;
573 : case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
574 : case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
575 : case 5 : b+=k8[4]; /* fall through */
576 : case 4 : a+=k[0]; break;
577 : case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
578 : case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
579 : case 1 : a+=k8[0]; break;
580 : case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
581 : }
582 :
583 : #endif /* !valgrind */
584 :
585 0 : } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
586 0 : const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
587 0 :
588 0 : /*--------------- all but last block: aligned reads and different mixing */
589 0 : while (length > 12)
590 0 : {
591 0 : a += k[0] + (((uint32_t)k[1])<<16);
592 0 : b += k[2] + (((uint32_t)k[3])<<16);
593 0 : c += k[4] + (((uint32_t)k[5])<<16);
594 0 : mix(a,b,c);
595 0 : length -= 12;
596 0 : k += 6;
597 0 : }
598 0 :
599 0 : /*----------------------------- handle the last (probably partial) block */
600 0 : const uint8_t *k8 = (const uint8_t *)k;
601 0 : switch(length)
602 0 : {
603 0 : case 12: c+=k[4]+(((uint32_t)k[5])<<16);
604 0 : b+=k[2]+(((uint32_t)k[3])<<16);
605 0 : a+=k[0]+(((uint32_t)k[1])<<16);
606 0 : break;
607 0 : case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
608 0 : case 10: c+=k[4];
609 0 : b+=k[2]+(((uint32_t)k[3])<<16);
610 0 : a+=k[0]+(((uint32_t)k[1])<<16);
611 0 : break;
612 0 : case 9 : c+=k8[8]; /* fall through */
613 0 : case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
614 0 : a+=k[0]+(((uint32_t)k[1])<<16);
615 0 : break;
616 0 : case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
617 0 : case 6 : b+=k[2];
618 0 : a+=k[0]+(((uint32_t)k[1])<<16);
619 0 : break;
620 0 : case 5 : b+=k8[4]; /* fall through */
621 0 : case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
622 0 : break;
623 0 : case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
624 0 : case 2 : a+=k[0];
625 0 : break;
626 0 : case 1 : a+=k8[0];
627 0 : break;
628 0 : case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
629 0 : }
630 0 :
631 0 : } else { /* need to read the key one byte at a time */
632 0 : const uint8_t *k = (const uint8_t *)key;
633 0 :
634 0 : /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
635 0 : while (length > 12)
636 0 : {
637 0 : a += k[0];
638 0 : a += ((uint32_t)k[1])<<8;
639 0 : a += ((uint32_t)k[2])<<16;
640 0 : a += ((uint32_t)k[3])<<24;
641 0 : b += k[4];
642 0 : b += ((uint32_t)k[5])<<8;
643 0 : b += ((uint32_t)k[6])<<16;
644 0 : b += ((uint32_t)k[7])<<24;
645 0 : c += k[8];
646 0 : c += ((uint32_t)k[9])<<8;
647 0 : c += ((uint32_t)k[10])<<16;
648 0 : c += ((uint32_t)k[11])<<24;
649 0 : mix(a,b,c);
650 0 : length -= 12;
651 0 : k += 12;
652 0 : }
653 0 :
654 0 : /*-------------------------------- last block: affect all 32 bits of (c) */
655 0 : switch(length) /* all the case statements fall through */
656 0 : {
657 0 : case 12: c+=((uint32_t)k[11])<<24;
658 0 : case 11: c+=((uint32_t)k[10])<<16;
659 0 : case 10: c+=((uint32_t)k[9])<<8;
660 0 : case 9 : c+=k[8];
661 0 : case 8 : b+=((uint32_t)k[7])<<24;
662 0 : case 7 : b+=((uint32_t)k[6])<<16;
663 0 : case 6 : b+=((uint32_t)k[5])<<8;
664 0 : case 5 : b+=k[4];
665 0 : case 4 : a+=((uint32_t)k[3])<<24;
666 0 : case 3 : a+=((uint32_t)k[2])<<16;
667 0 : case 2 : a+=((uint32_t)k[1])<<8;
668 0 : case 1 : a+=k[0];
669 0 : break;
670 0 : case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
671 311039 : }
672 311039 : }
673 311039 :
674 311039 : final(a,b,c);
675 311039 : *pc=c; *pb=b;
676 311039 : }
677 :
678 :
679 :
680 : /*
681 : * hashbig():
682 : * This is the same as hashword() on big-endian machines. It is different
683 : * from hashlittle() on all machines. hashbig() takes advantage of
684 : * big-endian byte ordering.
685 : */
686 : static uint32_t hashbig( const void *key, size_t length, uint32_t initval)
687 0 : {
688 0 : uint32_t a,b,c;
689 0 : union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
690 0 :
691 0 : /* Set up the internal state */
692 0 : a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
693 0 :
694 0 : u.ptr = key;
695 0 : if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
696 0 : const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
697 0 :
698 0 : /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
699 0 : while (length > 12)
700 0 : {
701 0 : a += k[0];
702 0 : b += k[1];
703 0 : c += k[2];
704 0 : mix(a,b,c);
705 0 : length -= 12;
706 0 : k += 3;
707 0 : }
708 0 :
709 0 : /*----------------------------- handle the last (probably partial) block */
710 0 : /*
711 0 : * "k[2]<<8" actually reads beyond the end of the string, but
712 0 : * then shifts out the part it's not allowed to read. Because the
713 0 : * string is aligned, the illegal read is in the same word as the
714 0 : * rest of the string. Every machine with memory protection I've seen
715 0 : * does it on word boundaries, so is OK with this. But VALGRIND and CBMC
716 0 : * will still catch it and complain. CBMC will ignore this type of error
717 0 : * in the code block between the pragmas "CPROVER check push" and
718 0 : * "CPROVER check pop". The masking trick does make the hash noticably
719 0 : * faster for short strings (like English words).
720 0 : */
721 0 : #ifndef VALGRIND
722 : #ifdef CBMC
723 : # pragma CPROVER check push
724 : # pragma CPROVER check disable "pointer"
725 : #endif
726 : // changed in aws-c-common: fix unused variable warning
727 0 :
728 0 : switch(length)
729 0 : {
730 0 : case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
731 0 : case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
732 0 : case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
733 0 : case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
734 0 : case 8 : b+=k[1]; a+=k[0]; break;
735 0 : case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
736 0 : case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
737 0 : case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
738 0 : case 4 : a+=k[0]; break;
739 0 : case 3 : a+=k[0]&0xffffff00; break;
740 0 : case 2 : a+=k[0]&0xffff0000; break;
741 0 : case 1 : a+=k[0]&0xff000000; break;
742 0 : case 0 : return c; /* zero length strings require no mixing */
743 0 : }
744 : #ifdef CBMC
745 : # pragma CPROVER check pop
746 : #endif
747 : #else /* make valgrind happy */
748 :
749 : const uint8_t *k8 = (const uint8_t *)k;
750 : switch(length) /* all the case statements fall through */
751 : {
752 : case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
753 : case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
754 : case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
755 : case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
756 : case 8 : b+=k[1]; a+=k[0]; break;
757 : case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
758 : case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
759 : case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
760 : case 4 : a+=k[0]; break;
761 : case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
762 : case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
763 : case 1 : a+=((uint32_t)k8[0])<<24; break;
764 : case 0 : return c;
765 : }
766 :
767 : #endif /* !VALGRIND */
768 :
769 0 : } else { /* need to read the key one byte at a time */
770 0 : const uint8_t *k = (const uint8_t *)key;
771 0 :
772 0 : /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
773 0 : while (length > 12)
774 0 : {
775 0 : a += ((uint32_t)k[0])<<24;
776 0 : a += ((uint32_t)k[1])<<16;
777 0 : a += ((uint32_t)k[2])<<8;
778 0 : a += ((uint32_t)k[3]);
779 0 : b += ((uint32_t)k[4])<<24;
780 0 : b += ((uint32_t)k[5])<<16;
781 0 : b += ((uint32_t)k[6])<<8;
782 0 : b += ((uint32_t)k[7]);
783 0 : c += ((uint32_t)k[8])<<24;
784 0 : c += ((uint32_t)k[9])<<16;
785 0 : c += ((uint32_t)k[10])<<8;
786 0 : c += ((uint32_t)k[11]);
787 0 : mix(a,b,c);
788 0 : length -= 12;
789 0 : k += 12;
790 0 : }
791 0 :
792 0 : /*-------------------------------- last block: affect all 32 bits of (c) */
793 0 : switch(length) /* all the case statements fall through */
794 0 : {
795 0 : case 12: c+=k[11];
796 0 : case 11: c+=((uint32_t)k[10])<<8;
797 0 : case 10: c+=((uint32_t)k[9])<<16;
798 0 : case 9 : c+=((uint32_t)k[8])<<24;
799 0 : case 8 : b+=k[7];
800 0 : case 7 : b+=((uint32_t)k[6])<<8;
801 0 : case 6 : b+=((uint32_t)k[5])<<16;
802 0 : case 5 : b+=((uint32_t)k[4])<<24;
803 0 : case 4 : a+=k[3];
804 0 : case 3 : a+=((uint32_t)k[2])<<8;
805 0 : case 2 : a+=((uint32_t)k[1])<<16;
806 0 : case 1 : a+=((uint32_t)k[0])<<24;
807 0 : break;
808 0 : case 0 : return c;
809 0 : }
810 0 : }
811 0 :
812 0 : final(a,b,c);
813 0 : return c;
814 0 : }
815 :
816 :
817 : #ifdef SELF_TEST
818 :
819 : /* used for timings */
820 : void driver1()
821 : {
822 : uint8_t buf[256];
823 : uint32_t i;
824 : uint32_t h=0;
825 : time_t a,z;
826 :
827 : time(&a);
828 : for (i=0; i<256; ++i) buf[i] = 'x';
829 : for (i=0; i<1; ++i)
830 : {
831 : h = hashlittle(&buf[0],1,h);
832 : }
833 : time(&z);
834 : if (z-a > 0) printf("time %d %.8x\n", z-a, h);
835 : }
836 :
837 : /* check that every input bit changes every output bit half the time */
838 : #define HASHSTATE 1
839 : #define HASHLEN 1
840 : #define MAXPAIR 60
841 : #define MAXLEN 70
842 : void driver2()
843 : {
844 : uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
845 : uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
846 : uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
847 : uint32_t x[HASHSTATE],y[HASHSTATE];
848 : uint32_t hlen;
849 :
850 : printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
851 : for (hlen=0; hlen < MAXLEN; ++hlen)
852 : {
853 : z=0;
854 : for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
855 : {
856 : for (j=0; j<8; ++j) /*------------------------ for each input bit, */
857 : {
858 : for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */
859 : {
860 : for (l=0; l<HASHSTATE; ++l)
861 : e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
862 :
863 : /*---- check that every output bit is affected by that input bit */
864 : for (k=0; k<MAXPAIR; k+=2)
865 : {
866 : uint32_t finished=1;
867 : /* keys have one bit different */
868 : for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
869 : /* have a and b be two keys differing in only one bit */
870 : a[i] ^= (k<<j);
871 : a[i] ^= (k>>(8-j));
872 : c[0] = hashlittle(a, hlen, m);
873 : b[i] ^= ((k+1)<<j);
874 : b[i] ^= ((k+1)>>(8-j));
875 : d[0] = hashlittle(b, hlen, m);
876 : /* check every bit is 1, 0, set, and not set at least once */
877 : for (l=0; l<HASHSTATE; ++l)
878 : {
879 : e[l] &= (c[l]^d[l]);
880 : f[l] &= ~(c[l]^d[l]);
881 : g[l] &= c[l];
882 : h[l] &= ~c[l];
883 : x[l] &= d[l];
884 : y[l] &= ~d[l];
885 : if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
886 : }
887 : if (finished) break;
888 : }
889 : if (k>z) z=k;
890 : if (k==MAXPAIR)
891 : {
892 : printf("Some bit didn't change: ");
893 : printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
894 : e[0],f[0],g[0],h[0],x[0],y[0]);
895 : printf("i %d j %d m %d len %d\n", i, j, m, hlen);
896 : }
897 : if (z==MAXPAIR) goto done;
898 : }
899 : }
900 : }
901 : done:
902 : if (z < MAXPAIR)
903 : {
904 : printf("Mix success %2d bytes %2d initvals ",i,m);
905 : printf("required %d trials\n", z/2);
906 : }
907 : }
908 : printf("\n");
909 : }
910 :
911 : /* Check for reading beyond the end of the buffer and alignment problems */
912 : void driver3()
913 : {
914 : uint8_t buf[MAXLEN+20], *b;
915 : uint32_t len;
916 : uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
917 : uint32_t h;
918 : uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
919 : uint32_t i;
920 : uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
921 : uint32_t j;
922 : uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
923 : uint32_t ref,x,y;
924 : uint8_t *p;
925 :
926 : printf("Endianness. These lines should all be the same (for values filled in):\n");
927 : printf("%.8x %.8x %.8x\n",
928 : hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13),
929 : hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13),
930 : hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13));
931 : p = q;
932 : printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
933 : hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
934 : hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
935 : hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
936 : hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
937 : hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
938 : hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
939 : p = &qq[1];
940 : printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
941 : hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
942 : hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
943 : hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
944 : hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
945 : hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
946 : hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
947 : p = &qqq[2];
948 : printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
949 : hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
950 : hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
951 : hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
952 : hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
953 : hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
954 : hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
955 : p = &qqqq[3];
956 : printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
957 : hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
958 : hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
959 : hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
960 : hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
961 : hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
962 : hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
963 : printf("\n");
964 :
965 : /* check that hashlittle2 and hashlittle produce the same results */
966 : i=47; j=0;
967 : hashlittle2(q, sizeof(q), &i, &j);
968 : if (hashlittle(q, sizeof(q), 47) != i)
969 : printf("hashlittle2 and hashlittle mismatch\n");
970 :
971 : /* check that hashword2 and hashword produce the same results */
972 : len = 0xdeadbeef;
973 : i=47, j=0;
974 : hashword2(&len, 1, &i, &j);
975 : if (hashword(&len, 1, 47) != i)
976 : printf("hashword2 and hashword mismatch %x %x\n",
977 : i, hashword(&len, 1, 47));
978 :
979 : /* check hashlittle doesn't read before or after the ends of the string */
980 : for (h=0, b=buf+1; h<8; ++h, ++b)
981 : {
982 : for (i=0; i<MAXLEN; ++i)
983 : {
984 : len = i;
985 : for (j=0; j<i; ++j) *(b+j)=0;
986 :
987 : /* these should all be equal */
988 : ref = hashlittle(b, len, (uint32_t)1);
989 : *(b+i)=(uint8_t)~0;
990 : *(b-1)=(uint8_t)~0;
991 : x = hashlittle(b, len, (uint32_t)1);
992 : y = hashlittle(b, len, (uint32_t)1);
993 : if ((ref != x) || (ref != y))
994 : {
995 : printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
996 : h, i);
997 : }
998 : }
999 : }
1000 : }
1001 :
1002 : /* check for problems with nulls */
1003 : void driver4()
1004 : {
1005 : uint8_t buf[1];
1006 : uint32_t h,i,state[HASHSTATE];
1007 :
1008 :
1009 : buf[0] = ~0;
1010 : for (i=0; i<HASHSTATE; ++i) state[i] = 1;
1011 : printf("These should all be different\n");
1012 : for (i=0, h=0; i<8; ++i)
1013 : {
1014 : h = hashlittle(buf, 0, h);
1015 : printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
1016 : }
1017 : }
1018 :
1019 : void driver5()
1020 : {
1021 : uint32_t b,c;
1022 : b=0, c=0, hashlittle2("", 0, &c, &b);
1023 : printf("hash is %.8lx %.8lx\n", c, b); /* deadbeef deadbeef */
1024 : b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b);
1025 : printf("hash is %.8lx %.8lx\n", c, b); /* bd5b7dde deadbeef */
1026 : b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b);
1027 : printf("hash is %.8lx %.8lx\n", c, b); /* 9c093ccd bd5b7dde */
1028 : b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
1029 : printf("hash is %.8lx %.8lx\n", c, b); /* 17770551 ce7226e6 */
1030 : b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
1031 : printf("hash is %.8lx %.8lx\n", c, b); /* e3607cae bd371de4 */
1032 : b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b);
1033 : printf("hash is %.8lx %.8lx\n", c, b); /* cd628161 6cbea4b3 */
1034 : c = hashlittle("Four score and seven years ago", 30, 0);
1035 : printf("hash is %.8lx\n", c); /* 17770551 */
1036 : c = hashlittle("Four score and seven years ago", 30, 1);
1037 : printf("hash is %.8lx\n", c); /* cd628161 */
1038 : }
1039 :
1040 :
1041 : int main()
1042 : {
1043 : driver1(); /* test that the key is hashed: used for timings */
1044 : driver2(); /* test that whole key is hashed thoroughly */
1045 : driver3(); /* test that nothing but the key is hashed */
1046 : driver4(); /* test hashing multiple buffers (all buffers are null) */
1047 : driver5(); /* test the hash against known vectors */
1048 : return 1;
1049 : }
1050 :
1051 : #endif /* SELF_TEST */
1052 :
1053 :
1054 : #if _MSC_VER
1055 : #pragma warning(pop)
1056 : #endif /* _MSC_VER */
1057 :
1058 : #ifdef CBMC
1059 : # pragma CPROVER check pop
1060 : #endif /* CBMC */
1061 :
1062 : /* clang-format on */
1063 : #endif /* AWS_COMMON_PRIVATE_LOOKUP3_INL */
|